
Introduction

The concept of fuzzy sets was initially introduced by Zadeh

(1965). Since then, for the purpose of using this concept in

topology and analysis, many authors have expansively deve-

loped the theory of fuzzy sets and applications. Kaleva and

Seikkala (1984),  Deng (1982), Kramosil and Michalek (1975),

and Erceg  (1970)  have particularly introduced the concept of

fuzzy metric spaces in different ways. Recently, many authors

have also studied the fixed point theory in these fuzzy metric

spaces (Sharma and Deshpande, 2003; 2002; Chugh and Kumar,

2001; Jung et al., 1996; 1994; Fang, 1994; Hadzic, 1989; Grabiec,

1988; Badard, 1984; Singh and Ram, 1982). Mishra et al. (1994)

proved common fixed point theorems on complete fuzzy met-

ric spaces, which generalized, extended and fuzzified several

known fixed point theorems for contractive type maps on met-

ric and other spaces. They assumed continuity of one map in

each of the two pairs of compatible maps and also the commu-

tativity of continuous maps. Cho (1997) and Jung et al. (1994)

extended and generalized  several fixed point theorems on

metric spaces, Menger probabilistic metric spaces and uni-

form spaces, and proved common fixed point theorems on

complete fuzzy metric spaces. The results of Cho (1997) were

extended by Sharma and Deshpande (2002), and Sharma (2001).

Cho (1997), Hadzic (1989), Jungck et al. (1983), and Singh and

Kasahara (1983) have proved the common fixed point theorems

for mappings under the condition of continuity and compati-

bility of type (α) in complete fuzzy metric, probabilistic metric,

and metric spaces. In this paper, the assumption of continuity

was removed, relaxing compatibility or compatibility of type

(α) or compatibility of type (β) to weak compatibility, and the

completeness of space was replaced with a set of alternative

conditions. The assumption of commutativity of continuous

maps was also removed in the case of two pairs of maps. The

results of  Sharma and Deshpande (2003) have been extended.

Definitions

Given below are definitions used in the paper.

Definition 1.1. A binary operation *: [0,1] × [0,1] × [0,1] →
[0,1] is called a continuous t-norm, if ([0,1], *) is an abelian

topological monoid with unit 1 such that a
1
 * b

1
 * c

1
 ≤ a

2
 * b

2

* c
2
, whenever a

1
 ≤ a

2
 and b

1
 ≤ b

2
 and c

1
 ≤ c

2
 for all a

1
 a

2
,   b

1
 b

2
,

c
1
 c

2
 are in [0, 1]  (Sharma, 2002).

Definition 1.2. The 3-tuple  (X, M,*) is called a fuzzy 2-metric

space if X is an arbitrary set, * is a continuous t-norm and M

is a fuzzy set in X3 x (0, ∞), satisfying the following conditions:

for all x, y, z, u ∈ X, and t
1
, t

2
, t

3
 >  0 (Sharma, 2002).

(FM-1) M(x, y, z, 0) = 0,

(FM-2) M(x, y, z, t) = 1,  t > 0 and when at least two of the

three points are equal,

(FM-3) M(x, y, z, t) = M(x, z, y, t)  =  M(y, z, x, t) = ....

(symmetry about three variables),

(FM-4) M(x, y, z, t
1 
+ t

2
 + t

3
) ≥ M(x, y, u, t

1
)* M(x, u, z, t

2
)*

M(u, y, z, t
3
)

(this corresponds to tetrahedron inequality in 2-met-

ric space ),

(FM-5)     M(x, y, z,.) : [0, ∞) à [0, 1] is left continuous.

Example 1.1. Let (X, d) metric space define a *b = ab or a * b

= min {a, b} and for all x, y ∈ X and t > 0
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then:

(X, M,*) is a fuzzy metric space



This is called fuzzy metric M induced by metric d, the stan-

dard fuzzy metric.

Definition 1.3. Let (X, M,*) be a fuzzy 2-metric space:

then:

•   a sequence {x
n
} in fuzzy 2-metric space X  is  said  to  be

convergent  to  a  point  x ∈ X,  if

lim
n
 → ∞   M(x

n
, x, a, t)   =  1

for all  a  ∈ X and  t > 0

•  a sequence {x
n
} in fuzzy 2-metric space X is called a Cauchy

sequence, if

lim
n
 → ∞  M(x

n+p
, x

n
, a, t) = 1

for all a  ∈ X and t > 0, p > 0

•  a fuzzy 2-metric space in which every Cauchy sequence is

convergent  is  said to be complete

Remark 1.1. Since * is continuous, it follows from (FM-4)

that the limit of the sequence in fuzzy 2-metric space is uniquely

determined (Sharma, 2002).

Let (X, M, *) be a fuzzy 2-metric space with the following

condition:

(FM – 6)   lim
n
 → ∞  M(x, y, z, t)   =  1

for all x, y, z ∈ X

Definition 1.4. A pair of mappings A and S is called a weakly

compatible pair if they commute at coincidence points  (Jungck

and Rhoades, 1998).

Example 1.2. Define A, S : [0, 3] → [0, 3] by:

then:

for any   x   ∈  [1, 3],   ASx   =  SAx, showing that  A, S  are weakly

compatible maps on [0, 3].

Example 1.3.  Let  X  =  [0, 2] with the metric d defined by:

d(x, y)  =   x – y , then for each  t ∈ (0, ∞) define

M(x, y,  t) =               M(x, y, 0) = 0, x, y ∈ X

Clearly, M(X, M,*) is a fuzzy metric space on  X, where * is

defined by  a*b  = ab  or  a*b  =  min{a, b}.

Define A, B: X → X by Ax  =  x, if  x ∈ [0, 1/3), Ax  =  1/3, if  x

≥ 1/3  and  Bx = x/(1 + x ), x  ∈ [0, 2].

Consider the sequence{ x
n
  =  ½  + 1/n; n ≥ 1 } in X

then:

lim
n
 → ∞ Ax

n 
= 1/3 and lim

n
 → ∞ Bx

n 
= 1/3

but

lim
n →

 ∞ M(ABx
n 
, BAx

n 
,
 
t) =               ≠ 1

thus:

A and B are non-compatible, but A and B are commuting at

their coincidence point x = 0, that is, weakly compatible at

x = 0

also

lim
n
 → ∞ M(ABx

n 
,
 
BBx

n 
,
 
t) =          ≠ 1

and

lim
n
 → ∞ M(BAx

n 
,
 
AAx

n 
,
 
t) =             ≠ 1

further

lim
n
 → ∞ M(AAx

n 
, BBx

n 
,
 
t) =             ≠ 1

thus:

A and B are not compatible of type (β)

In view of this example, it is observed that:

• weakly compatible maps need not be compatible

• weakly compatible  maps need not be compatible of

type (α)

• weakly compatible maps need not be compatible of

type (β)

Lemma 1.1.  For all x, y, z ∈ X,  M(x, y, z, ·) is non-decreasing

(Sharma, 2002).

Lemma 1.2.  Let {y
n
} be a sequence in a fuzzy 2-metric space

(X, M, *) with the condition (FM-6), if there exists a number

k ∈ (0, 1), such that:

M(y
n+2

, y
n+1

, a, kt) ≥ M(y
n+1

, y
n
, a, t)

for all t > 0 and a ∈ X and n = 1, 2,…, then {y
n
} is a Cauchy

sequence in X (Sharma, 2002).

Lemma 1.3. If for all x, y, a ∈ X, t > 0 and for a number  k ∈
(0, 1)

M(x, y, a, kt) ≥ M(x, y, a, t)

then, x = y (Sharma, 2002).

Results and Discussion

Sharma and Deshpande (2003) proved the following:

Theorem A. Let (X, M, *) be a fuzzy metric space with t * t ≥ t

for all t ∈ [0, 1] and the condition (FM- 6). Let A, B, S, T be

mappings  from X into itself, such that:

x, if  x ∈ [0, 1]     3 - x , if   x ∈ [0, 1]
A(x)  =             and  S(x)  =

3, if  x ∈ [1, 3]     3, if   x ∈ [1, 3]

          t

t + 1/3 - 1/4

          t

t + 1/3 - 1/4

          t

t + 1/4 - 1/3

          t

t + 1/3 - 1/4

      t     ,
t + d(x, y)
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(1) A(X) ⊂ T(X),  B(X) ⊂ S(X)

(2) there exists a constant k ∈ (0, 1), such that:

M(Ax, By, kt)  ≥  M(Ty, By, t) * M(Sx, Ax, t) * M(Sx, By, αt)

* M[Ty, Ax, (2 – α)t] * M(Ty, Sx, t)

for all x, y ∈ X,    α ∈ (0, 2) and  t > 0

(3) one of A(X), B(X), S(X), or T(X) is a complete subspace of

X,

then:

(i)    A and S have a coincidence point

(ii)   B and T have a coincidence point

further, if

(4)   the pairs {A, S} and {B, T} are weakly compatible

then:

(iii)  A, B, S and T have a unique fixed point in X

Theorem A for fuzzy 2-metric space, has been proved. The

following  are proved as:

Theorem 2.1. Let (X, M, *) be a fuzzy 2-metric space with

t * t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let A, B, S

and T be mappings from X into itself, such that:

(2.1)  A(X) ⊂ T(X) , B(X) ⊂ S(X)

(2.2)  there exists a constant k ∈ (0, 1)

such that:

M(Ax, By, a, kt)  ≥   M(Ty, By, a, t) * M(Sx, Ax, a, t) * M(Sx, By, a,

αt)

* M[Ty, Ax, a, (2 – α)t] * M(Ty, Sx, a, t)

for all x, y, a ∈ X , α ∈ (0, 2) and t > 0

(2.3)  one of A(X), B(X), S(X) or T(X) is a complete subspace

of  X

then:

(i) A and S have a coincident point

(ii) B and T have a coincident point

further, if

(2.4) the pairs {A, S} and {B, T} are weakly compatible

then:

(iii) A, B, S and T have a unique fixed point in X

Proof.  By (2.1), since A(X) ⊂ T(X), so for any arbitrary x
0
 ∈

X, there exists a point x
1
 ∈ X, such that Ax

0
 = Tx

1
.  Since B(X)

⊂ S(X), for this point x
1
, a point x

2
 ∈ X can be chosen, such

that Bx
1
 = Sx

2
, and so on. Inductively, a sequence {y

n
} in X

can be defined as:

y
2n

 = Tx
2n+1

 = Ax
2n

, and

y
2n+1

 = Sx
2n+2

 = Bx
2n+1

  for  n = 0, 1, 2, …

By (2.2)  for all t > 0 and  α = 1 - q, with q ∈ (0,1), it would be:

M(Ax
2n+2

, Bx
2n+1

, a, kt) ≥ M(Tx
2n+1

, Bx
2n+1

, a, t)* M(Sx
2n+2

, Ax
2n+2

,

a, t) * M(Sx
2n+2

, Bx
2n+1

, a, α t) * M[Tx
2n+1

, Ax
2n+2

, a, (2 – α) t] *

M(Tx
2n+1

, Sx
2n+2

, a, t)

M(y
2n+2

, y
2n+1

, a, kt)  ≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) *

M(y
2n+1

, y
2n+1

, a, α t) * M[y
2n

, y
2n+2

, a, (2 – α) t] * M(y
2n

, y
2n+1

,

a, t) ≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) * 1 * M[y
2n

, y
2n+2

,

a, (1 + q) t] * M(y
2n

, y
2n+1

, a, t)

On the lines of Sharma (2002) it is:

≥ M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) * M(y
2n

, y
2n+2

 a, tq +

t/2 + t/2)

≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) * M(y
2n

, y
2n+2

, y
2n+1

, qt)

* M(y
2n

, y
2n+1

, a, t/2) * M(y
2n+1

, y
2n+2

, a, t/2)

≥  M(y
2n

,  y
2n+1

,  a,  t) * M(y
2n+1

, y
2n+2

, a, t) * M(y
0
, y

2
, y

1
, t/3q2n ) * M(y

0
, y

1
,

y
1
, t/3q2n) * M(y

1
, y

2
, y

1
, t/3q2n) * M(y

2n
, y

2n+1
, a, t/2) * M(y

2n+1
,

y
2n+2

, a, t/2)

thus:

since M(y
0
, y

2
, y

1
, t/3q2n) → 1 as n → ∞

it is:

(2.5) M(y
2n+1

, y
2n+2

, a, kt) ≥ M(y
2n

, y
2n+1

, a, t)* M(y
2n+1

, y
2n+2

, a, t)

similarly, it is:

(2.6) M(y
2n+2

, y
2n+3

, a, kt) ≥ M(y
2n+1

, y
2n+2

, a, t) * M(y
2n+2

, y
2n+3

, a, t)

from (2.5) and (2.6), it follows that:

M(y
n+1

, y
n+2

, a, kt) ≥ M(y
n
, y

n+1
, a, t) * M(y

n+1
, y

n+2
, a, t)

for n = 1, 2,…, and also for positive integer n, p

M(y
n+1

, y
n+2

, a, kt)  ≥  M(y
n
, y

n+1
, a, t) * M(y

n+1
, y

n+2
, a, t/kP)

thus:

since M(y
n+1

, y
n+2

, a, t/kP) → 1 as  p → ∞

it is:

M(y
n+1

, y
n+2

, a, kt)  ≥  M(y
n
, y

n+1
, a, t)

so, by Lemma 1.2, {y
n
} is a Cauchy sequence in X.

Now, suppose S(X) is complete, note that S(X) contained the

sub-sequence {y
2n+1

} in S(X) and has a limit in S(X), it is

called z.

Let u = S-1z, thus, Su = z. The fact  will be used that the sub-

sequence {y
2n

} also converges to z

by (2.2) with α = 1, it is:
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M(Au, y
2n+1

, a, kt) = M(Au, Bx
2n+1

, a, kt)

≥  M(Tx
2n+1

, Bx
2n+1

, a, t) *M(Su, Au, a, t) *M(Su, Bx
2n+1

, a, t) *

M(Tx
2n+1

, Au, a, t) * M(Tx
2n+1

, Su, a, t)

=  M(y
2n

, y
2n+1

, a, t) * M(Su, Au, a, t) * M(Su, y
2n+1

, a, t) * M(y
2n

, Au,

a, t) * M(y
2n

, Su, a, t)

which implies that as n → ∞

M(Au, z, a, kt)  ≥   1 * M(z, Au, a, t) * 1 * M(z, Au, a, t) * 1

≥    M(Au, z, a, t)

Therefore, by Lemma 1.3,  Au = z

thus:

Au = z = Su, i.e., u is a coincidence point of A and S. This

proves (i).

Since  A(X) ⊂ T(X), Au  =  z  implies that z ∈ T(X). Let  v  =

T-1z , then Tv  =  z . It can be easily verified by using similar

arguments of the previous part of the proof that Bv = z

thus:

Bv  =  z   =  Tv, i.e.,  v is a coincidence point of B and T. This

proves (ii).

If it is assumed that T(X) is complete, then argument analo-

gous to the previous completeness argument establishes (i)

and (ii). The remaining two cases pertain essentially to the

previous cases. Indeed, if B(X) is complete, then by (2.1), z ∈
B(X) ⊂ S(X). Similarly, if A(X) is complete, then z ∈ A(X) ⊂
T(X). Thus (i) and (ii) are completely established.

Since the pair {A, S} is weakly compatible, therefore, A and S

commute at their coincidence point, i.e., ASu = SAu, or Az = Sz

similarly,

BTv = TBv  or  Bz = Tz.

Now, to prove Az = z by (2.2), with α = 1

M(Az, y
2n+1

, a, kt) = M(Az, Bx
2n+1

, a, kt)

≥  M(Tx
2n+1

,  Bx
2n+1

, a, t) * M(Sz, Az, a, t) * M(Sz, Bx
2n+1

, a, t)

* M(Tx
2n+1

, Az, a, t) * M(Tx
2n+1

, Sz, a, t)

=  M(y
2n

, y
2n+1

, a, t) * M(Az, Az, a, t) * M(Az, y
2n+1

, a, t) *

M(y
2n

, Az, a, t) * M(y
2n

, Az, a, t)

Taking limit as n → ∞

M(Az, z, a, kt)  ≥  1 * 1 *M(Az, z, a, t) * M(z, Az, a, t) * M(z,

Az, a, t)

≥  M(Az, z, a, t)

therefore:

by Lemma 1.3, Az = z

thus:

Az  =   z   =   Sz

similarly,

Bz = z = Tz.

This means that z is a common fixed point of A, B, S and T.

For uniqueness of common fixed point let w ≠ z be another com-

mon fixed point of A, B, S and T. Then by (2.2) with α = 1

M(z, w, a, kt) = M(Az, Bw, a, kt)

≥ M(Tw, Bw, a, t) * M(Sz, Az, a, t) * M(Sz, Bw, a, t) * M(Tw,

Az, a, t) * M(Tw, Sz, a, t)

≥    1 * 1 * M(z, w, a, t) * M(w, z, a, t) * M(w, z, a, t)

≥    M(z, w, a, t)

therefore:

by Lemma 1.3, z = w. This completes the proof.

Theorem 2.2. Let (X, M, *) be a fuzzy 2-metric space with

t* t ≥ t for all  t ∈ [0, 1] and the condition (FM-6). Let A, B,

S, T and P be mappings from X into itself, such that:

(2.7)   P(X) ⊂ AB(X) ,  P(X) ⊂ ST(X)

(2.8)  there exists a constant k ∈ (0, 1), such that:

M(Px, Py, a, kt) ≥ M(ABy, Py, a, t) * M(STx, Px, a, t) * M(STx,

Py, a,α t) * M[ABy, Px, a, (2 – α) t] * M(ABy, STx, a, t)

for all x, y, a ∈ X ,  α ∈ (0, 2) and t > 0

(2.9)  If one of P(X) , AB(X) or ST(X), is a complete sub-space

of X

then:

(i) P and AB have a coincident point

(ii) P and ST have a coincident point

further, if

(2.10)  PB = BP ; AB = BA ; PT = TP and ST = TS

(2.11)   the pairs {P, AB} and { P, ST} are weakly compatible

then:

(iii) A, B, S, T and P have a unique common fixed point in X

Proof. By (2.7), since P(X) ⊂ AB(X) , for any point x
0
 ∈ X,

there exists a point x
1
 ∈ X, such that, Px

0
 = ABx

1
. Since P(X) ⊂

ST(X), for this point x
1
, a point x

2
 ∈ X can be chosen, such

that, Px
1
 = Sx

2
, and so on. Inductively, a sequence {y

n
} in X

can be defined as:

y
2n

 = Px
2n

 = ABx
2n+1

 and y
2n+1

 = Px
2n+1

 = STx
2n+2

where:

n = 0, 1, 2, …

by (2.8), for all t > 0 and  α = 1 - q with q ∈ (0,1), it would be:
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M(Px
2n+2

, Px
2n+1

, a, kt) ≥ M(ABx
2n+1

, Px
2n+1

, a, t) * M(STx
2n+2

,

Px
2n+2

, a, t) * M( STx
2n+2

, Px
2n+1

, a, α t) * M[ABx
2n+1

, Px
2n+2

, a,

(2 – α)t]* M(ABx
2n+1

, STx
2n+2

, a, t)

M(y
2n+2

,y
2n+1

, a, kt)  ≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t)

* M(y
2n+1

, y
2n+1

, a, α t) * M[y
2n

, y
2n+2

, a, (1 + q) t] * M(y
2n

, y
2n+1

,

a, t)

≥  M (y
2n

,y
2n+1

, a,t) *M(y
2n+1

, y
2n+2

, a, t) * 1 * M [y
2n, y2n+2

, a,

(1 + q) t] *M (y
2n

, y
2n+1

, a, t)

≥  M(y
2n

, y
2n+1

, a, t) *M(y
2n+1

, y
2n+2

, a, t) * M[y
2n

, y
2n+2

, a, (1+q) t]

On the lines of Sharma (2002), it is:

≥  M (y
2n

, y
2n+1

, a, t) * M (y
2n+1

, y
2n+2

, a, t) * M(y
2n

, y
2n+2

, a, tq +

t/2 + t/2)

≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) * M(y
2n

, y
2n+2

, y
2n+1

, qt)

* M(y
2n

, y
2n+1

, a, t/2) * M(y
2n+1

, y
2n+2

, a, t/2)

≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t) * M(y
0
, y

2
, y

1
, t/3q2n )

* M(y
0
, y

1
, y

1
, t/3q2n) * M(y

1
, y

2
, y

1
, t/3q2n)* M(y

2n
, y

2n+1
, a, t/2)

* M(y
2n+1

, y
2n+2

, a, t/2)

thus:

since M(y
0
, y

2
, y

1
, t/3q2n) → 1 as n → ∞

it is:

(2.12) M(y
2n+1

, y
2n+2

, a, kt) ≥  M(y
2n

, y
2n+1

, a, t) * M(y
2n+1

, y
2n+2

, a, t)

similarly,

(2.13) M(y
2n+2

, y
2n+3

, a, kt) ≥  M(y
2n+1

, y
2n+2

, a, t) * M(y
2n+2

, y
2n+3

, a, t)

from (2.12) and (2.13) if follows that:

M(y
n+1

, y
n+2

, a, kt)  ≥  M(y
n
, y

n+1
, a, t) * M(y

n+1
, y

n+2
, a, t)

for n = 1, 2,…, and also for positive integer n, p

M(y
n+1

, y
n+2

, a, kt)  ≥  M(y
n
, y

n+1
, a, t) * M(y

n+1
, y

n+2
, a, t/kP)

thus:

since M(y
n+1

, y
n+2

, a, t/kP) → 1 as  p → ∞

M(y
n+1

, y
n+2

, a, kt)  ≥  M(y
n
, y

n+1
, a, t)

therefore:

by Lemma 1.2, {y
n
} is a Cauchy sequence in X.

Now, suppose ST(X) is complete

note that the subsequence {y
2n+1

} is contained in ST(X) and

has a limit in ST(X) called z

Let u = (ST)-1z, then STu = z.

Applying the fact that the sub-sequence {y
2n

} also converges

to z

by (2.8) with α = 1, it would be:

M(Pu, y
2n+1

, a, kt) = M(Pu, Px
2n+1

, a, kt)

≥    M(ABx
2n+1

, Px
2n+1

, a, t) * M(STu, Pu, a, t) * M(STu, Px
2n+1

,

a, t) * M(ABx
2n+1

, Pu, a, t)* M(ABx
2n+1

, STu, a, t)

= M(y
2n

, y
2n+1

, a, t) * M(z, Pu, a, t) * M(z, y
2n+1

, a, t) * M(y
2n

, Pu,

a, t) * M(y
2n 

, z, a, t)

which implies that as n → ∞

M(Pu, z, a, kt)    ≥    1 * M(z, Pu, a, t) * 1 *M(z, Pu, a, t) * 1

≥    M(Pu, z, a, t)

therefore:

by Lemma 1.3, Pu = z. Since STu = z, Pu = z = STu,   i.e., u is

coincidence point of P and ST. This proves (i).

Since P(X) ⊂ AB(X), Pu = z implies that z ∈ AB(X).

Let v = (AB)-1z, then ABv = z. It can easily be verified by using

similar argument of the previous part of the proof that Pv = z.

If it is  assumed that AB(X) is complete, then argument analo-

gous to the previous completeness argument establishes (i)

and (ii).

The remaining one case pertains, essentially, to the previous

cases indeed. If P(X) is complete, then by (2.7), z ∈ P(X) ⊂
ST(X), or z ∈ P(X) ⊂ AB(X). Thus (i) and (ii) are completely

established. Since, the pair {P, ST} is weakly compatible, there-

fore, P and ST commute at their coincident point, i.e., P(STu) =

(ST)Pu, or Pz = STz. Similarly, P(ABv) = (AB)Pv or Pz = ABz.

Now, to prove that Pz = z, by (2.8) with α = 1, it would be:

M(Pz, y
2n+1

, a, kt) = M(Pz, Px
2n+1

, a, kt)

≥    M(ABx
2n+1

, Px
2n+1

, a, t) * M(STz, Pz, a, t) * M(STz, Px
2n+1

, a,

t) * M(ABx
2n+1

, Pz, a, t) * M(ABx
2n+1

, STz, a, t)

=   M(y
2n

, y
2n+1

, a, t) * M(Pz, Pz, a, t) * M(Pz, y
2n+1

, a, t) *M(y
2n

,

Pz, a, t) * M(y
2n

, Pz, a, t)

Taking the limit n → ∞, it is:

M(Pz, z, a, kt) ≥ 1 * 1 * M(Pz, z, a, t) * M(z, Pz, a, t) * M(z, Pz, a, t)

≥    M(Pz, z, a, t)

therefore:

by Lemma 1.3,  Pz = z, thus ABz  =  z  =  Pz  =  STz.

Now, it will be shown that Bz = z. In fact by (2.8) with α = 1 and

(2.10) it is:

M(z, Bz, a, kt), = M(Pz, BPz, a, kt) = M(Pz, PBz, a, kt)

≥    M[AB(Bz), PBz, a, t] * M[STz, Pz, a, t] * M[STz, PBz, a, t]

* M[AB(Bz), Pz, a, t] * M[AB(Bz), STz, a, t]

= 1 * 1 * M(z, Bz, a, t) * M(Bz, z, a, t) * M(Bz, z, a, t)

≥   M(z, Bz, a, t)

which implies, by Lemma 1.3, that Bz = z. Since ABz = z,

therefore, Az = z. Finally, Tz = z. Indeed, by (2.8) with α = 1 and

(2.10)

M(Tz, z, a, kt) = M(TPz, Pz, a, kt) = M(PTz, Pz, a, kt)
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≥    M[ABz, Pz, a, t] * M[ST(Tz), PTz, a,t] *  M[ST(Tz), Pz, a,t]

* M[ABz, P(Tz), a, t] * M[ABz, ST(Tz), a, t]

= 1 * 1 * M(Tz, z, a, t) * M(z, Tz, a, t) * M(z, Tz, a, t)

≥    M(Tz, z, a, t)

which implies, by Lemma 1.3, that Tz = z. Since STz = z,  z =

STz = Sz. Therefore, by combining the above results, Az = Bz

= Sz = Tz = Pz = z, i. e., z is a common fixed point of A, B, S, T

and P.

For uniqueness of common fixed point, let w ≠ z be another

common fixed point of A, B, S, T and P.

then:

by (2.8) with α = 1, it would be:

M(z, w, a, kt)  ≥  M(ABw, Pw, a, t) * M(STz, Pz, a, t) * M(STz,

Pw, a, α t) * M(ABw, Pz, a, t) * M(ABw, STz, a, t)

≥   1 * 1 * M(z, w, a, t) * M(w, z, a, t) * M(w, z, a, t)

≥   M(z, w, a, t)

therefore:

by Lemma 1.3, we have z = w. This completes the proof.

Theorem 2.3.  Let (X, M, *) be a fuzzy-2  metric space with t*

t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let A, B, S, T,

P and Q be mappings from X into itself, such that:

(2.14)   P(X) ⊂ AB(X) , Q(X) ⊂ ST(X)

(2.15)  there exists a constant  k ∈ (0, 1), such that:

M(Px, Qy, a, kt) ≥    M(ABy, Qy, a, t) * M(STx, Px, a, t) * M(STx,

Qy, a, α t)  * M[ABy, Px, a, (2 – α)t] * M(ABy, STx, a, t)

for all x, y, a  ∈ X,   α ∈ (0, 2) and t > 0

(2.16) If one P(X), Q(X), AB(X) or ST(X) is complete sub-

space of X

then:

(i) P and ST have a coincident point

(ii) Q and AB have a coincident point

further, if

(2.17)  AB = BA,  QB = BQ , PT = TP and ST = TS

(2.18)  the pairs {Q, AB} and {P, ST} are weakly compatible

then:

A, B, S, T, P and Q have a unique common fixed point in X.

Proof. By (2.14), since P(X) ⊂ AB(X), for any point x
0
 ∈ X,

there exists a point x
1
 ∈ X, such that Px

0
 = ABx

1
. Since Q(X) ⊂

ST(X), for this point x
1
, a point x

2
 ∈ x can be chosen, such that:

Qx
1
 = STx

2
, and so on

inductively, a sequence {y
n
} in X can be defined as:

y
2n

 = Px
2n

 = ABx
2n+1

, and

y
2n+1

  =  Qx
2n+1

 = STx
2n+2

where:

n = 0,1, 2,…

For all t > 0 and α = 1 – q, with q ∈ (0,1). As proved in Theo-

rems (2.1) and 2.2, it can be proved that {y
n
} is a Cauchy

sequence in X. Now, suppose ST(X) is complete; note that

ST(X) contains  the sub-sequence {y
2n+1

}and has a limit in

ST(X), called z. Let u = (ST)-1z, then STu = z. Applying the fact

that the sub-sequence (y
2n

} also converges to z

by (2.15) with α = 1, it would be:

M(Pu, Qx
2n+1

, a, kt)  ≥  M(ABx
2n+1

, Qx
2n+1

, a, t) * M(STu, Pu, a, t) *

M(STu, Qx
2n+1

, a, t)  * M(ABx
2n+1

, Pu, a, t) * M(ABx
2n+1

, STu, a, t)

=    M(y
2n

, y
2n+1

, a, t) * M(STu, Pu, a, t) * M(STu, y
2n+1

, a, t) * M(y
2n

, Pu,

a, t) * M(y
2n

, STu, a, t)

which implies that as n → ∞

M(Pu, z, a, kt)  ≥  M(Pu, z, a, t)

therefore:

by Lemma 1.3, Pu = z. Since STu = z, thus Pu = z = STu, i.e., u

is a coincidence point of P and ST. This proves (i). Since P(X)

⊂ AB(X)  and Pu = z implies that z ∈ AB(X).

Let v = (AB)-1 z, then  ABv = z

by (2.15) with α = 1, it would be:

M(Pz, y
2n+1

, a, kt) = M(Pz, Qx
2n+1

, a, kt)

≥  M(ABx
2n+1

, Qx
2n+1

, a, t) * M(STz, Pz, a, t) * M(STz, Qx
2n+1

,

a, t)  * M(ABx
2n+1

, Pz, a, t) * M(ABx
2n+1

, STz, a, t)

≥   M(y
2n

, y
2n+1

, a, t) * M(STz, Pz, a, t) * M(STz, y
2n+1

, a, t)

* M(y
2n

, Pz, a, t) * M(y
2n

, STz, a, t)

Taking the limit as n → ∞, it is:

M(Pz, z, a, kt)  ≥  M(Pz, z, a, t)

therefore:

by Lemma 1.3, we have Pz = z = STz.

Now, it shows that Qz = z. In fact by (2.15) with α = 1 and

(2.17), it would be:

M(y
2n

, Qz , a, kt) = M(Px
2n 

, Qz,  a, kt)

≥  M(ABz, Qz, , a, t) * M(STx
2n

 , Px
2n

, a, t) * M(STx
2n

, Qz, a, t) *

M(ABz, Px
2n

, a, t) * M(ABz, STx
2n

, a, t)

Taking the limit  n → ∞

M(z, Qz, a, t) ≥ M(Qz, z, a, t)

S. Sharma and J. K. Tiwari228



therefore:

by Lemma 1.3, Qz = z = ABz. Thus, Pz = Qz = ABz = STz = z.

By putting x = z and y = Bz, with α = 1 in (2.15), using (2.17)

and Lemma 1.3, it is easy to see that Bz = z. Since ABz = z,

therefore, Az  = z

similarly,

by putting x = Tz and y = z, with α  = 1 in (2.15), using (2.17)

and Lemma 1.3, it is easy to prove that Tz = z. Since STz = z,

Sz = z. Therefore, by combining the above results, it would be:

Az = Bz = Sz = Tz = Qz = z

which mean that z is the common fixed point of A, B, S, T, P

and Q. Thus, it is easy to prove uniqueness.

Theorem 2.4. Let (X, M, *) be a fuzzy metric 2-space with t *

t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let A, B, S, T

and {P
i
}

i ∈ I
 be mappings from x into itself:

(2.19)  ∪
i ∈ I

 P
I
(X) ⊂ AB(X),   ∪

i ∈ I
 P

i
(X) ⊂ ST(X), where I  is an

index set

(2.20)   there exists a constant k ∈ (0, 1), such that:

M(P
i
x, P

i
y, a, kt)  ≥  M(ABy,P

i
y, a, t) * M(STx, P

i
x, a, t) * M(STx,

P
i
y, a,α t) * M[ABy,  P

i
x, a, (2 – α) t] * M(ABy, STx, a, t)

for all x, y, a ∈ X, α ∈ (0, 2), i ∈ Ι and t > 0

(2.21) If one of AB(X), or ST(X), or P
i
(X) (i ∈ Ι) is a complete

subspace of X, then:

(i) for all i ∈ Ι,  P
i
 and AB have a coincidence point

(ii) for all i ∈ Ι, P
i
 and ST have a coincidence point

further, if

(2.22)   for all i ∈ Ι,  P
i
B = BP

i
 AB = BA ; P

i
T = TP

i
 and ST = TS

(2.23)  for all i ∈ Ι, the pairs {P
i
, AB} and {P

i
, ST} are weakly

compatible, then

(iii) A, B, S, T and {P
i
}

i ∈ I
 have a unique common fixed point in X

if we put  B = T = I
x 
 (the identity map on X) in Theorem 2.2, the

following result:

Corollary 2.1. Let (X, M, *) be a fuzzy 2-metric space with t *

t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let A, S and P

be mappings from X into itself, such that:

(2.24)   P(X) ⊂ A(X), P(X) ⊂ S(X)

(2.25)  there exists a constant  k ∈ (0, 1), such that:

M(Px, Py, a, kt) ≥ M(Ay, Py, a, t) * M(Sx, Py, a, α t) * M[Ay, Py,

a, (2 - α) t]* M(Ay, Sx, a, t)

for all x, y, a ∈ X,  α ∈ (0, 2) and t > 0

(2.26) If one of P(X), or S(X) is a complete sub-space of X,

then:

(i) P and A have a coincident point

(ii) P and S have a coincident point

further, if

(2.27) The pair {P, A} and {P, S} are weakly compatible, then:

(iii) A, S and P have a unique common fixed point in X

if, A = B = S = T = I
x
 (the identity mapping on X) in Theorem

2.2, the following results are acquired:

Corollary 2.2.  Let (X, M, *) be a fuzzy metric 2-space with t *

t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let P be

mappings from X itself, such that:

(2.28) there exists a constant   k ∈ (0, 1), such that:

M(Px, Py, a, kt)  ≥  M(y, Py, a, t) * M(x, Px, a, t) * M(x, Py, a, αt)

* M[y, Px, a, (2 – α) t] * M(y, x, a, t)

for all x, y, a ∈ X,  α ∈ (0, 2) and t > 0

if P(X) is a complete sub-space of X, then P has a unique

common fixed point in X

by using Theorem 2.1, the following  results are acquired:

Theorem 2.5.  Let (X, M, *) be a fuzzy 2-metric space with t *

t ≥ t for all t ∈ [0, 1] and the condition (FM-6). Let A, B and T

be mappings from X into itself, such that:

(2.29)  A(X) ∪ B(X) ⊂ T(X)

(2.30)   there exists a constant k ∈ (0, 1), such that:

M(Ax, By, a, kt)   ≥   M(Ty, By, a, t) * M(Tx, Ax, a, t) *

M(Tx, By, a, α t) *  M[Ty, Ax, a, (2 – α) t] * M(Ty, Tx, a, t)

for all x, y, a ∈ x ,  α ∈  (0, 2) and t > 0

(2.31) One of A(X), B(X) or T(X) is a complete sub-space of X

then:

A, B, T have a coincidence point

thus:

Theorem 2.1,  for sequence of mappings, is established in the

following manner:

Theorem 2.6.  let (X, M, *) be a fuzzy metric 2-space with t * t

≥ t for all t ∈ [0, 1] and the condition (FM- 6). Let S, T, A
i
 : X →

X, i = 0, 1, 2, …, such that:

(2.32)   A
0
(X) ⊂ T(X) ,  A

i
(X) ⊂ S(X),   i ∈ N

(2.33)  there exists a constant k ∈ (0, 1), such that:

M(A
0
x, A

i
y, a, kt)  ≥  M(Ty, A

i
y, a, t) * M(Sx, A

0
x, a, t) * M(Sx,

A
i
y, a, α t) *  M[Ty, A

0
x, a, (2-α) t] * M(Ty, Sx, a, t)

Theorems in Fuzzy 2-Metric Spaces 229



for all x, y, a ∈ X, α ∈ (0, 2)  and  t > 0

(2.34) the pairs {A
0
, S} and {A

i
, T} (i ∈ N) are weakly

compatible

(2.35) if one of S(X), T(X) or A
0
(X) is a complete sub-space

of X, or alternatively A
i
, i ∈ N are complete sub-space of X

then:

S, T and A
i
, i = 0, 1, 2, … have a unique common fixed point.
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