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We present a class of globally monotonically convergent iterative methods for the determination of zeros of a polyno-
mial. The proposed method uses the well-known Newton’s second order method as a basic ingredient to generate this
class of methods, following the approach of Petkovic and Trickovic as supported by Cauchy Schwartz inequality from
which come in hand three methods of fourth order. The obtained methods can be used to provide tight inclusion
conditioning bounds separating the sought zeros. This means that they always provide good numerical approximations
within the theoretical conditioning bounds. It is found that one of the fourth order methods so obtained competes most
favourably with any known methods for finding zeros of a polynomial.
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Introduction
When a zero seeking algorithm has local convergency pro-
perties, the iteration if it converges will display a doubling
phenomenon at each iteration. The point at which an iterative
sequence starts experiencing a contraction immediately an
iterative process is began called a point of attraction or else
we say that the iterative sequence diverges which is known
as point of repulsion. Of major importance in this paper is
the derivation of two new methods through the technique of
Petkovic and Trickovic (1995) as supported by the concept
of Cauchy - Schwartz inequality

where, Z
1
, Z

2
 ...Zn are the roots of polynomial of degree n for

the case of real simple zeros, given by: P(Z)  = ∑ aj Zj, a
j 
∈⊄.

It is found that one of the two new methods obtained com-
petes favourably with the popular Chevbyshev third order
method for the extraction of zeros of a polynomial.

In a note of passing we shortend notation by omitting the
argument Z from function such as P(Z), and write simply P.
We also denote the first three derivatives of a function P by
P′,P′′ and P′′′, respectively. It is also supposed that the func-
tions discussed in this paper has what ever number of C n+1

necessary on the interval.

Experimental

Derivation of the class of methods. The class of methods
under consideration is a particular case of a general one point
iterative formula considered in Petkovic and Trickovic (1995)
as well as Milovanovic (1974) which is as follows, we define:

    1
Z - Zi

∑
    1
Z - Zi

≤ n ∑

Z
i
(k+1) = g′ (Z (k)), (k = 0, 1...)             (2.1)

where; g (Z) → Z
i
 - Φ(Z

i
) as a one point method.

Observe that Φ(Z
i
) is a rational map which converges such

that: Z k+1 - Z k → 0.

For m ≥ 2 an interative method of order m could be modified
(see, Petkovic and Trickovic (1995) for more details) such that:

In this paper, starting from Newton’s Second order method we
shall generate such higher methods which are structurally
similar to those obtained by Jarrat (1968). Method (2.2) is a
major plank in which our derivation heavily leans on.
Define Newton’s formula as:

In view of (2.1) and (2.2) we write (2.3) in the form:

Z
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i
(k) _  Φ(Z(k)) (1+     g ′ (Z
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(k)))    (2.2)
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Method (2.4) is the Chevbyshev third order method and con-
sider method of Jarrat (1968) for more details.
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Next, by setting       , and using as before

the procedure described above we write:

We differentiate g (Z) as follows:

Z = Z
i
  _  Φ(Z

i
)    1+       ( g′ (Z)               (2.5)
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Substitute (2.13) into (2.12), we have:
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Case II:
  n
n − 1

p′2 ≥           pp′′   (2.15)

As before, we have from:
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Substitute the right hand side of (2.15) for p′2 in method (2.16),
we have:
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Simplifying (2.17), we have:
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After some calculations we shall obtain:

Where, the term - 4p′2 pp′′ is introduced into the numerator
part of (2.6) to compensate for the term 3p2 p′2 - p2 p′ p′′′.

However, the choice of this extral term - 4p′2 pp′′ is arbitary
which is also found to be optimal in some sense.
In view of (2.6), method (2.5) takes the form:

Simplifying we have:

Following carefully some selected ideas in Hansen and Partick
(1977), it is easy to see that:

By Cauchy - Schwartz inequality, we have that:

It follows that:

Deduce then immediately that:

        (n − 1) p′2 - n p p′′ ≥  0            (2.10)

In view of (2.10), we shall obtain two new methods out of
method (2.8) which is precisely our aim.

We shall categorize our procedures of derivation under two
cases:

Case I:             (2.11)

We now rewrite (2.8) by subsituting the right hand side of
(2.11) for  pp′′ into the resulting expressing for g′ (Z):
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Now, if we ignore  the extract term - 4p′2 pp′′ added to method
(2.8) we shall obtain directly an iterative method of the form:
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Methods (2.14), (2.18) and (2.19) are of fourth order of conver-
gence, in the sense of Hansen and Patrick (1977) as well as
Traub (1964) and Petkovic and Herceg (1992). In the next sec-
tion, we  shall discuss our methods numerically in comparison
with Halley’s method, Davies and Dawson (1975), (Hansen
and Patrick (1977), Chevbyshev’s method, Petkovic and
Herceg (1992).

Results and Discussion

The iterative methods discussed earlier can be used for any
polynomial of degree n > 3. Our scalar test problem is a poly-
nomial of degree 5 given by:

p (Z) = Z 5 − 6 Z 4 − 20 Z 3 + 120 Z 2 + 64 Z − 384 = 0

The initial inclusion zeros is Z(0) = − 4.5

We used the results from our methods (2.14) and (2.18) to
compare with results from Halleys method and Chevbyshev’s
method. The Halley’s and Chevbyshev’s methods are given
by:

p′2 −              pp′′  > 0+ 1   1
n − 1







This was a major plank in which our methods were ob-
tained. Since convergence is monotonic for all real zeros
satisfying the methods described above, the method with
fastest convergence is one with the largest step Z(k+1) −
Z(k). As observed in our calculations, it is seen that the

We present our results in ordinary real floating arithmetic.

All results are presented below in Table 1.

It can be seen from the Table 1 that Halley’s third order method
performs worst than any of the four methods. It can also be
seen that our method (2.18) has high and extremely fast con-
vergency properties as Chevbyshev’s third order method. It
is also noticed that our method (2.14) is converging but at a
rate less than both of our methods, (2.18), (2.19) and
Chevbyshev’s method.

The actual zero of the polynomial problem is - 4.

One striking thing about our methods (2.14) and (2.18) is that,
convergence to the desired zeros is not affected by the de-
gree of polynomial.

All our tested problems are polynomial with real simple zeros.
The methods can be adapted for polynomial with real multiple
zeros but this has not been studied in details in this paper.

As, in Patrick and Hansen (1992) iterative method. it is known
that Cauchy - Schwartz  inequality can be used to prove that:

Table 1

 No. of Proposed   Proposed   Proposed Halley’s  Chevbyshev’s
Iteration method 2.14   method 2.18   method 2.19 method    method

0 - 4.500000000 - 4.5000000000 - 4.500000000 - 4.500000000 - 4.500000000
1 - 4.036653964 - 4.0569632550 - 4.010442833 - 4.033284200 - 4.056976693
2 - 3.998106190 - 4.0031990970 - 4.047858808 - 4.000019194 - 4.000212678
3 - 4.000101004 - 3.9999994955 - 4.001058584 - 4.000012796 - 4.000000000
4 - 3.999994613 - 4.0000000000 - 4.000000008 - 3.999997013 -
5 - 4.000000285 - 3.9999999869 - 3.999996018 -
6 - 3.999999670 - - - 3.9999994692 -
7 - - - - 4.000000002 -
8 - - - - 4.0000000000 -

Z
1
= Z

i
 −

∧

pp′′
2p′

p′ −

p

(Halley’s method)

Z
1
= Z

i
 −            1 +

∧ p
p′

pp′′
2p′2





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(Chevbyshev’s method)







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factors                    and                    decay to zero number at a very

rapid rate. It is also hoped that if multiple precision arithmetic is

used in the implementation of the methods,  the rate of conver-
gency may require fewer steps in our calculations.

Local existence. We set forth to prove that our methods
conform with fixed point theorem.

Theorem. Each of our methods (2.14), (2.18) and (2.19)
converges monotonically towards the desired zero.

Proof. Since each has a Lipschitz constant less than 1 it
is self verifying that each of the methods does not pos-
sess normal structure. It follows that the sequence{Z

i
(k)} →

ξ where, all Z
i
(k) and ξ all lie in the interval disk of desired

zero. It holds good that in the limit as k → ∞ p(Z
i
(k)) → 0.

This shows that the distance topology is   Z
i
(k) − Z

i
(k+1)   → 0.

In addition, the triangular inequality holds for the set{Z
i
(k)}.

Therefore, we conclude that our methods are feasible and
endorsed fixed point which converges to a limit point.

p2 p′ p′′′
    2p′4

p2 p′ p′′′
    6p′4
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