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PLANETARY ORBITS IN AXISYMMETRIC VACUUM GRAVITATIONAL FIELDS
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An exact axisymmetric asymptotically flat field, is determined by Einstein equations, possessing a quadrupole moment
due to a static mass, may be treated as a perturbation on Schwarzschild field. Exploiting this, planetary equations under
the influence of the mentioned gravitational field has been worked out. The results exhibit features that shed new light
on issues in relativistic celestial mechanics and models of planetary motion.

Key words: Planetary orbits, Vacuum, Gravitational field.

Introduction

Celestial mechanics has been the driving force which spurred
the great mathematicians to do incredible efforts to find
useful methods of analysing planetary motion. The invented
elegant tools had astonishing applicability in many diverse
fields. Even today there are significant problems asking for
their solution and one such problem is presented here. It isan
empirical fact that stars, in particular the Sun, are rotating
gravitating sources. The gravitational field of such a source
may be represented by rotating Kerr space-time or its other
useful variants, or space-time such as Tomimatsu-Sato space-
time, etc. Metrics of such space-times are axisymmetric. Thus,
a planetary theory for such a gravitational field should in
principle take into account the possible effect of the rotation
of the central mass. To keep mathematics tractable, in the
first instance axisymmetric metrics which are static, has been
considered here.

The problem of axisymmetic static vacuum field in relativistic
gravitodynamics was first formulated by Weyl (1917). As in
case of vacuum or electrostatic vacuum, the metric tensor
could be diagonalised via an introduction of two (Spatial)
functions, A and p:
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Thus the field equations are quite simple for vacuum
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Here 7. and p are functions of p and z, these coordinates cor-
responding to a lorentzian orthonormal cylindrical polar
holonomic basis. and commias (as subscripts in the preceding
relations) denote as usual partial differentiation with respect
to the chosen coordinates. As we see, Eq (2) satisfied by  is
a flat-space laPlace equation, while p is calculable by quadra-
tures, employing X. It follows from the fact that (2) is the
integrability conditions for the system (3) and (4).

An exact axisymmetric asymptotically flat solution of Einstein
equation, possessing a quadrupole moment due to a static
mass represents a small deformation of Schawarzschild solu-
tion (Hernandez et al 1993). It produces a deformation in away
that the full spherical symmetry possessed by a gravitating
source, like the Sun, decreases. It is not difficult to see that
the general asympotically flat solution of Eq (2) is given by:
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where q is a certain parameter. Herein prolate spherlcal
coordinates (x, y) have been introduced:

X = p+ ! ’ y = p-T ".(6)
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The first term in eq. (5) is the Schwarzschild spherically sym-
metric sotution, while other terms describe the deformation of
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the massive source. An integration of Eqs (3) and (4) in terms
of these new coordinates, with A given by eq. (5), leads to the
following value for the function p.:
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Relations of eq. (5) and (9) constitute a useful solution of an
axisymmetric field in that they can be exploited to look into
physical properties associated with issues like multipole mo-
ment of the field in question.
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The lagrangian for our metric becomes

L= % (@ e OB (24 52 4 PP G o (10)
So the Euler-Lagrange equations are
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Here a dot denotes a differentiation with respect to the affine
parameter . By eq.(10) in (11), we obtain the following equa-
tions of motion of the test particles moving in an axisymmetric
static vacuum gravitational field:
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One can easily deduce the following equation from (14):
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Where  is a constant of integration. Substituting the value of
A from (5) ineq. (16), we get
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Where a and / are certain constants which can be evaluated.
The above equation shows that areal velocity is not, in gen-
eral, constant in an axisymmetric static vacuum field - in con-
trast to the case of Schwarzschild space-time. Empirically,
however. to a high degree of accuracy the areal velocity is
constant for our solar system planets. In our case, areal veloc-
ity becomes constant if we set L. = 0. But then metric (1) would
reduce to a flat (minkowskian) space time. It follows that, of
necessity, A = 0. This suggests if we incorporate the contribu-
tion of rotation of the central gravitating body in a planetary
theory, a residual slight perturbation on the standard
constant areal velocity should exist. At the moment, we are
looking into this possibility. Clearly, this finding may ultimately
shed new light on centuries-old celestial mechanics based on
Keplerian laws.

It is known, with the exception of the two-body motion, that
the problems of celestial mechanics are generally incapabable
of exact mathematical solution. Due to this difficulty (of ab-
sence of an exact solution to three-body and, generally,
n-body problem). one often resorts to or tries to exploit the
method of two-body problem . This is particularly true of stan-
dard Galilie-Newtonian theory itself. This same difficulty is
perhaps also responsible for the popular misconception that
planets of our solar system have constant areal velocity. In
fact, however, staying right in Galilie-Newtonioan theory, if
one switches from the two-body problem to even the restricted
three-body problem, areal velocity turns out to be nonconstant
in general (Lagrange 1772; Jacobi 1966; Bartin 1987). This situ-
ation nicely compares with our finding of the general
nonconstancy of the areal velocity in relativistic celestial me-
chanics.
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Also, a straightforward manipulation of eq. (14) shows that
the orbit equation in the polar plane in case of an axisymmetric
static vacuum field is:
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With « = 1/p. We are looking into further implications of the
formalism given above for which study is under way.

Conclusion

As we have seen, areal velocity is, in general, not constant for
space-times with an azimuthal Killing 1-vector field. However,
if we calculate the areal velocity at the origin of prolate coor-
dinates that we have introduced, we are left with only the first
term in the expansion (eq.18). Thus, the following classical
Keplerian result, in Galilei-Newtonian physics, of the con-
stancy of areal velocity is recovered. This particular case of
our general result is also corroborated empirically as we know
that to a high degree of accuracy the areal velocity is constant
for our solar system planets.

It seems, nevertheless, that azimuthal symmetry of space time
structure plays further and as yet generally unknown role in

M J Igbal, J Quamar

the theory of relativistic celestial mechanics. The presence of
extra terms in eq. (17) may be interpreted as a physical expla-
nation of the observed smallness of the rotation of stars, in
particular of the Sun. Accordingly, any possible oblateness
arising from a rotation of the sun should be small. This factis
particularly significant for gravity theories should in principle
lead back to Einstein’s original theory.

Another aspect of our result follows with the earlier work
which argued that due to the solar rotation the perihelion
(Quamar 1986), advances by an amount of 3m? »%/h* during
each revolution of the test body. However, this solar rotation
effect is small enough to be observed and detected within the
framework of the technology-2000 A.D. Finding of this paper,
thus, also confirms the result obtained earlier (Quamar 1986).
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