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THEORY OF THE CAGNIARD- DE Hoop METHOD
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The Cagniard-de Hoop method used to simplify certain complex integrals important in engineering and physics has been
studied. The path of integration in the complex plane is deformed so that the integral assumes a simple form along the new
path. It has been shown that the choice of this path depends on the branch of the multiple valued function as well as the
position of the observation point.
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Introduction
Several problems relating to wave propagation in elastic
solids are solved by the techniques of the Lapalace or the
Fourier transforms. In this approach the main difficulty is
encountered in the evaluation of the inversion integral. A

typical integral in elastodynamics is of the form

u(x,y) =) G (x,y,c;)exp[- ic;x -(C;2-k2)1ny]dC; (1)

where k> 0, y ~ 0 and C is a contour in the complex c;-plane
(Fung 1965). Integrals similar to (1) occur naturally in prob-
lems where an integral representation of Hankel's function
Hn(')(Z) or Hn(2)(z) is used (Rawlins 1974; Scheidle et aLI978;
Mikata 1993). The function (C;2_k2)1f2in Eq.(l.l) is made single

valued by introducing branch cuts emanating from the branch
points ± k and going to the left and right along the real axis. In
order that the integral may converge, one must choose a branch
of the function (C;2_k2)112which has a non-negative real part

forc; on C.

u(x,y) = fg(x,y,c;)exp[- ir{ c;cos8 -i (C;2-k2)I12sin8} ]dS (2)
c

where u(r,8) = U(rcos8, rsin8, and g(r,8;c;)=G(rcos8, rsin8;C;).
It is seldom possible to evaluate the integral (2) exactly and
recourse is usually made to some kind of an approximate
method. A technique now widely known a the Cagniard-de

Hoop method, has been developed to implify the above
integral (Hoop 1960). Recently Mourad and Deschamps (1995)
have applied Cagniardc-de Hoop transformation to solve

Lamb's problem for a hal f space having orthorhombic symme-
try. The underlying scxtic equation in their formalism is simi-
lar to the one introduced by Stroh (Ahmed et al) and exploited
by Barnett and Lothe (1985) to elucidate the existence of a
Rayleigh wave in an anisotropic medium. Let

S = c;cos8) -i(S2-k2)I12sin8 (3)

We arc seeking a contour in the s-plane whose image under

the transformation (3) is a subset of the real axis in the

S -plane. From eq (3) we get

which can be rearranged to give

(S- scos 8)2 = - (s2- k2)sin28

(~- 8+·( 2_k2)1/2· 8 (4)" - scos _ I S Sill .

Thus if s is real, s2-k2 ~ 0 and 8 oF 0, rrl2, rr , Eq. (4) represents
the equation of a hyperbola (Fig 1).

[k
ReS

8 ]2_ r:k~-8 ] 2 = 1, (5)
cas sin

i.e. a hyperbola with its centre at the origin and its foci at
the branch points of the function (C;2-k2)In. The path which we

are seeking to simplify the integral (2) is a branch of this
hyperbola. For further reference, let us denote this hyperbola
by H and its respective branches which lie in the left and right

half planes by HL and HR.

Here we shall investigate the transformation (3) which lies at

the root of the Cagniard-de Hoop method. We shall show
that the choice of a branch of the hyperbola H is not arbitrary.
It depends on the contour C as well as the location of the
observation point (x.y). We find that the tgransformation (3)
transforms either HL or HR but not both into a subset of the
real s-axis. If the image ofHL (or HR) is a ray, the image of H,
(or H) is a subset of another hyperbola. Since the success of
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Fig 1. The hyperbola H

141



142

the method hinges on the result of the transformation being
real, the decision whether to choose HL or HR must be made
with caution.

[. Branches of the function (~2_k2)1/2

We briefly discuss the mapping properties of the two branches
of the function (~2_k2)112

Let r, = I ~-k I , r2= I ~+k I ,8, = arg(~-k), 82 = arg (S-k), then a
branch f,(~) of the function (~2_k2)'12 can be chosen as (Fig 2;
Chunchill 1995)

iC8-8) }
fl(S) =;/rI1'2 cxp { T (1.1)

where

-k o k
Fig 2. Choice of the branch of (r2 • kl)112

The second branch f2(~) of the function (S2-k2) 112 can be
chosen a

_1- i(8 -8)
f,(/;) ="r

1
r2 exp {_' _2 } (1.2)

2

where rl > 0, r2> 0, 21t < 81 < 41t and -n < 82 < 1t, It is clear that
l~CS) = -fl (/;) for every ~ not lying on the branch cut

Now consider the mapping of the/;-plane by the function fl' If
~, is a point in the first quadrant then 0 < 8, + 82 < 1t and Eq
(1.2) shows that 0 < arg fl (~I) < 1t 12. Thus fl maps the first
quadrant into it elf. Similarly we can show that the function
maps the second quadrant into itself, and the third and the
fourth quadrants into the first and second quadrants respec-
tively. It maps each of the line segments -k < Re (/;) ~ ° and °
~ Res(/;) < k onto the segment °< Im (S) ~ k. Also it maps each
of the + ve and -ve imaginary axes onto the ray Im (/;) »k.

ince l~ CS) = -I', (S), it follows that 1'2 (S) maps the first quadrant
into the third, the second quadrant into the fourth and each of
the third and fourth quadrants into itself. The line segments
-k < Rc (S) ~ 0 and 0 s Re (s) < K arc both mapped onto the
segrnent-k s 1m (~) O. The function maps each of the +ve and
-ve imaginary axes onto the ray lm(s) < ok.

2. Image of the hyperbola

Let us assume 0 < 8 < 1t12, so that both sin 8 and cas 8 are
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positive. Also let

fl(~)=(~2_k2)'12 (2.1)

where fl is the same as in Sec.l. Consider the image of the
hyperbola (5) under the transformation (3), i.e

s =scos8 - ifl@ sin 8 (2.2)

Any point on the arc AB can be represented by

S,= acos 8 + i.Ja2 - k2 sin 8 (2.3)

where a~ k. Since

1;2,- k2 = [;/a2_ k2 eos S+ in sin SF (2.4)

we find
j;(~I)=.Ja2- k2 cos9+iasin8]2 (2.5)

where the value f, (~) has been chosen in accordance with the
mapping properties of the function f" discussed in Sec. I. If
we denote thc image of~1 under (2.2) by $" we find from (2.2),
(2.3) and (2.5)

s, = a. .. (2.6)

Since a ~ k is arbitrary, we see that the arc AB of the hyper-
bola of "ig. 1 is mapped one-to-one onto the ray Re(s) ~ k.

Now consider a point ~4 on the arc AC of the hyperbola and
denote its image by S4' We may take.

S4 = a cos 8 -i;/a2- k2 sin 8

where az k, Now

f,(S4)= - ;/a2-k2cos9+iasin9
and

S4 =~4 cos8 - if, (S4) sin 8 = a.

We again find that arc AC is also mapped one-to-one onto the
ray Re(s):2 k in the s-planc,

Now consider the arc DE of the hyperbola (2.5) (Fig. I). Let

S2= - cos8 + i .Ja2 - k2 sin 8 (2.7)

be a point on DE, with az k. Proceeding as in (2.4) and (2.5) we
find, in this case,

fl(~2)=-;/a2-k2cos8+iasin8 (2.8)

From (2.2), (2.7) and (2.8) we get

S2= S2 cas9 - if, (S2) sin 8 ~- a cas 28 + i;/a2- k2 sin 29 ..(2.9)

It is apparent from the above equation that the image of the
arc DE is not a ray in general, instead it is mapped onto (i) the
arc of the hyperbola,

I~Re(s) J 2-I. lm(s) J: I (2.10)Lk cos28 Lk sin 28 J
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which lies in the second quadrant, if 8 ~ re/4,

(ii) the positive imaginary axis Im(s) ~ 0 if8 =re!4.,

(iii) the arc of the hyperbola (2.10) which lies in the first
quadrant, ifre/4 < 8 <re/2.

The image of the arc DF of Fig. 1 is found, in a similar
manner to be subset of the hyperbola (2.10).

The purpose of the Cagniard-de Hoop method is to simplify
the integral (2). If the branch of (S2_k2)1/2 is chosen as the
function fJS), this object cannot be achieved by deforming
the path of integration C to the arc HL of the hyperbola of
Fig. I. It can be easily shown that the mapping (2.2) does not
map any point of the left halfs-plane in its domain into the real
s-axis.

Instead of (2.2), let us now consider the mapping

s =scos8 -if2@sin8 (2.11)
Using analogous arguments, we can establish kthat the
mapping (2.11) maps each of the arcs DE and DF (Fig. 1) onto
the ray Re (S) ::;- k while the branch HR is mapped into the
hyperbola (2.10).

From the above discussion, it is clear that in an application of
the Cagniard-de Hoop method, the choice fl(S) requires path
of integration to be deformed into the branch HR while the
choice f2(S) necessitates the selection of the branch HLof the
hyperbola of Fig.1.

Thus far we have assumed 0 < 8 < n. Now let re/2 < 8 < n, so
that cos8 < 0 and sin8 > O.In this case

S2= a cos8 + i-va2- k2 sin 8

with a ~ k, is a point on HL.We find

fl(S2) = -va2- k2cos8 + ia sin 8

and

Thus we see that for TC/2<8<rethe mapping (2.2) maps the arc
DE of the hyperbola (5), (Fig.1), one-to-one onto the ray Re(s)
~ k. We can also show that the arc DF is also mapped onto the

Table 1
Choice of HL or HR

Value ofe Branch of (~2_k2) In Branch of the hyperbola

re
0<9<2

re
0<9<2

re
TO<8<re

~ 0<8<re

FI HR

F2 HL

FI HL

f2 HR
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same ray. On the other hand, the branch HR is mapped into
hyperbola (2.10) by (2.2).

For the Cagniard-de Hoop method to be successful the ap-
propriate choice of the branch of the hyperbola (5), which
should replace the contour C in the integral (2), has to be
made as shown in Table 1.

3. An example of the Cagniard-de Hoop method

Let us consider a simple example of the integral (2) by taking
The above integral arises in the problem of a half-space

1 1 h .
g (r 8· 1')- _ - -- t us getting

, , '0 - 2re (S2-k2) 1/2 '

subjected to antiplane surface disturbances. The contour C
cannot be entirely above the real axis or below it because
none of fl(S) and f2(S) would then have a positive real part
along C. We must choose it as one of the two contours shown
in Fig.3.
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Fig.3 Choice of a contour.

If the contour CI is chosen, then the branch of (S2_k2)112which
has positive real part along CI is f2. The integral becomes

u(r,8)=- _1_ f {Exp[-ir{Scos8-if2@sin8}]}dS
2re c, f/S)

From Table 1 we find that, for 0 < 8 <re/2, we can deform the
contour C, into the branch HLof the hyperbola and, for re/2 <
8 < rr, we should choose HR for this purpose. Let 0 < 8 < re.
The contour can be deformed by drawing arcs of large radii,
since the integral along these arcs vanishes when these radii
approach infinity (Fig.4).

No singular point of the integrand is encircled and the integral
(3.2) is the same, except for a change of sign, when CI is re-
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Fig.4 Deformation of the contour of integration.

plaeed by the are FDE of the hyperbola (5). Now for _00 < s S
- k, on DE we have

~ = s cos8 +ds2- k2 sin 8 (3.3)

.f2(~) = -va2 - k2 cas 8+ is sin 8
~ cos B -if2(~) sin 8= s

And on FD
~= cos e - i-V"s2-k2 sin e (3.4)
.t;(~)= - -Vs2-k2 cos8 + is sin e
~ cos8 -if/E,) sin e = s

Now the integral (3.2) becomes

_ _1_ f { Exp[ - ir{ ~cos8 - if2@sine}]}dS
u(r,8) - - 21t PD+DE f2(S)

= okf { Exp(-irs) } dS .
21t oCQ.1 -d- ds

- '1S2- k2cos8 + sin8 s

I ooof Exp (- irs) dS
-- -k {~ } -d-- ds (3.5)
21t S2- k2cos8 + is in8 s

In the first integral on the right side of (3.5)

d~ -v~=k.2cos 8 + is sin8
~ = -Vs2- k2

While in the second
d = -v~cose + is sin ~
ds -vs2 - k2

Thus (3.5) becomes

_ _l_ooJ { Exp (iru)} du
u(r,8) - - k .1

1t '1U2- k2

+

= ~(I)(Kr)
1t "

where Ho(l) (kr) denotes the Hankel function of first kind.
Now consider the choice of C2 CFig.3) as the contour of inte-
gration in (3.1). We must choose the branch fl of the multiple

F'Ahmed

valued function (S2- k2)112since it has positive real part on
this contour. The integral

u(r,8) = - _1_ f{ Exp[ - ir{ Scose - if/S) sine} ]} dS
21t c2 fICS)

is evaluated using analogous steps. However the contour is
now deformed into the arc HR of the hyperbola. Omitting de-
tails, we finally end up with

iu(r,8) = -- H(2) (kr)
21t 0

where H (2)(kr) is the Hankel function of the second kind.
o

The above calculations show on the one hand that, if care is
not exercised in the choice of the proper branch of the
function (S2-k2)112or the branch HL or HR of the hyperbola one
may obtain an erroneous result.On the other hand the
flexibility in the choice of the branches is useful, because the
physics of a problem may force us to choose a solution with
proper asymptotic behaviour. If the time dependence is
harmonic of the form cxpf-iuit) the solution (4.6) is uitablc for
an outgoing cylindrical wave while for an incoming wave the
solution (4.7) will be appropriate .

References
Barnett D M, Lothe J 1985 "Free surface (Rayleigh) waves in

anisotropic half-spaces: The surface imnpedcnce method,
Proc R Soc London A402 135-152.

Churchill R V, Brown J W, Verhey R F 1995 Complex
Variables and Applications, Mcflraw-Hill, London.

De Hoop AT 1960 "A modification ofCagniard's method for
solving seismic pulse problems" Appl Sco Res B8 349-
356.

Fung Y C 1965 Foundations of Solid Mechanics, Prentice
Hall.

Mikata Y 1993 "Reflection and Transmission by a periodic
array of coplanar cracks: normal and oblique incidence",
JApplMech 60911-919.

Miklowitz J 1978 Elastic Waves and Wave Guides, North
Holland, Amsterdam.

Mourad A, Deschamps M 1995 "Study of 3D Lamb problem
for an anisotropic hat' space by the Cagniard-de Hoop
methods",J Acoust Sac Am 973194-3197.

Rawlins A D J 974 "Acoustic diffraction by an absorbing semi-
infinite half plane in a moving fluid", Proc R Sea Edinb
A72337-357.

ScheidJe W ,Ziegler F 1978 "Interaction of a pulsed Rayleigh
surface wave and a rigid cylindrical inclusion", in
Modern problems in Elastic Wave Propagation eds J
Miklowitz and J D Achenbach. John Wiley and Sons,
NewYorkpp 145-169.

Stroh A N 1962 "Steady state problems in anisotropic
elasticity" JMath Phys41 77-103.

'-


