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In this paper the existence of extremal solutions of a system of nonlinear abstract measure delay integro-differential
equations is established using the fixed pointtheorem of Tarski. Two basic integro-differential inequalities are obtained
which are further applied to prove the boundedness and uniqueness of the solution of related abstract measure delay

integro-differential equations.
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Introduction

The main feature of monotonicity theorems is to establish the
existence of maximal and minimal solutions of related prob-
lem under certain monotonicity conditions on the functions
involved in it. The monotonicity theorems for abstract meas-
ure differential equations were established by (Birkhoff 1967)
Joshiand Deo (1980) and Joshi and Kasralikar (1982). Alsoin
(Dhage 1989) the present author obtained similar results for
certain abstract measure integro-differential equations. In
1990, present author (Dhage 1990) considered a system of
abstract measure delay integro-differential equations (in short
delay AMIDE) which was a generalization of ordinary delay
integro-differential equations and studied the basic problems
such as existence, uniqueness, extention and stability using
the fixed point techniques. In the present study we exploit the
same delay AMIDE for other aspects of the solutions namely,
maximal and minimal solutions and the boundedness of the
solutions. As mentioned earlier (Dhage 1990) the delay AMIDE
is more general and includes several measure differential
equations as special cases. ’

The paper is presented in sections describing notations and
preliminaries needed in the sequel, the statement of the prob-
lem and the existence theorem for extremal solutions, the
integro-differential inequalities for the related delay AMIDE
and finally the applications of the delay integro-differential
inequalities are discussed.

Notations and preliminaries. Let R denote the real line, R the
Euclidean space with respect to the norm || defined by

o 4 R R o (T SRR SRS 2 &

for x = (x,,..., X,) € R".

Let X be a Banach space with a norm denoted by Il Il. For any
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two points X, y € X, the sequent Xy is defined by
Xy={zexlz=x+r{yx),0sr<1}..(2.2)

Suppose that x; and y, are two fixed points of X, and z a
variable point of X such that X Z and ¥,z are non-empty and
Xz C ¥,Z. For x, X, € ¥,Z, we write X, < X, (orx,2x))if y X,
€ Y¥,X,. For any point x € y 7, define the sets S _and S_ as
follows:

S,={rxl-co<r<1}), § ={rxl-co<r<1}...(2.3)
The distance |l x; - y, Il between x; and y, is denoted by w,
i.e. llx;y, Il=w. Foreach x € Xz there exists a unique vector
x' such that x' < x and |l x-x' Il = w. This vector is denoted
by x_.

A vector measure P defined on a 6-algebra M means an

ordered n-tuples (P,,...,P ) of n real measures (finite signed
measures). The norm Il P Il on P is defined by

PN S U P AR M erecresmmansesnemsenrossomsonsusaronnss (2.4)

where lI P, Il denotes the usual norm of the real measure P, Let
the space of all vector measures defined on M by denoted by
ca (X, M).Itcan beshown thatca(X, M) is aBanach space with
respect to the norm defined by (2.4) Dunford and Schwartz
(1958). If L is a positive measure on M, and P € ca (X, M), P
is absolutely continuous w.r.t. 1, if u(E)=0 implies P(E)=0
(the zero vector in R™). In this case P << 1. ForP € ca (X, M),
a positive measure [P|_is defined by

IPI (E) =‘§"]1 PR oo b s (2.6)

where | P, | denotes the total variation measure of the real
measure P, Itis known that | P(E) | 1P| (E),Ee M.



Mixed Monotonicity Theorems

Let M, denote the smallest o-algebra on Sx, containing {x,}
and the sets S, x € ¥ X,. For any z > x, let M_ denote the
smallest o-algebra defined on S, containing M, and the sets

—S"x, x € X,z. For a given positivé number H, the sets B, and
C,, are'defined by

B.={ue R¥[lul <H }.ruminnaian
and
C,={qe caSx, M) ligll +C<H,C>0}..... 2.8)

o A )

Delay amide and extremal solutions. For P << |1, we consider
the delay AMIDE, involving the delay w,

dp s T
— = f(x, P( S), P( Sx_)
dut

+ e KB, Y) P, P S ), P( SY) dit covevevnirennno(3.1)
Fcxz, FeM,;

satisfying the initial conditions

PO B M e oot )

where q € C,, is a known vector measure, dP/dy is the Radon-
Nikodym derivative of P with respect to the positive real
measure JL. f(x, y, z) and g(x, y, z) are the R" -valued functions
deﬁ_ned on S‘:‘ x B, x B such lh_at for ea_chP € ca(S, M), f(x,
P( S ), P( Sx_)and g(x, P( S ), P( Sx) are p-integrable,
and k(F, x) is areal n x n matrix defined on M x S . The detaile
of the delay AMIDE (3.1) - (3.2) and its special forms are
given in the literature (Dhage 1990).

Definition 3.1. Given an initial measure q € C,, a vector
measure p € ca(S,, M ) (for some z > x ) is said to be a solution
of delay AMIDE (3.1)-(3.2), if

i) P(E) = q(E), E € M,,, (ii) P << it on XZ, (iii) P(E) € B,
E e M, (iv) P satisfies (3.1) a.e. [L] on X Z.

A solution P of (3. 1)-(3.2), existing on Xz will be denoted by
P( Sx,; q).

Remark 3.1. The conditions (ii) and (iv) are together equiva-
lent to the condition

P(E)=[f(x,P( S ),P( Sx,)du

+Jg U0 K (F,Y) 80y, P( Sy, P( Sy,) dp) dit........(3.3)
E € X2, Ee M.
Now an order relation & in R" is introduced as follows.

Let x = (X,,....x)) and y = (y,,....y,) be two elements in R",
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Suppose k is a fixed positive integer such that k < n. Then by
xoy,wemeanx <y ifi=12,.. kandx 2y, ifi=k+l,..n.
The definitions of the extremal solutions of AMIDE are given
as follows (3.1)-(3.2).

Definition 3.2. A solution P,, =P, ( Sx,, q) of the AMIDE
(3.1)-(3.2), existing on X Z (z > x,) is said to be maximal, if
for any other solution P = P(Sx,, q) of (3.1)-(3.2), P(E) o
PM(E), Ee M, Similarly a minimal solution Prll of the AMIDE
(3.1)-(3.2) may be defined.

Remark 3.2. By the nature of the order relation o, the
maximal and minimal solutions defined above are respec-
tively k-max, (n-k)-mini and (n-k)-max, k-mini solutions of
(3.1)-(3.2) in the sense of definition considered by Deo and
Murdheshwer (1972).

Lemma 3.1. Let S =ca(X, M) be the set of all vector measures
defined on the c-algebra M. Then (S, ) is a complete lattice.

Proof. LetS ;=8 x8S,x..x8 =ca(X,M). ThenPe §;
impliesP=(P,,...P )€ § x§,x...xS_and P € S, where each
S,i=1,2,..,nis a Banach space of real measure with a norm
IP| defined as the total variation measure of P.. It can be proved
by the arguments similar to those used in Deo and Murd-
heshwer (1972) that each S, is a complete lattice w.r.L. the order
relation < if i = 1,2,....k and w.r.t. the order relation 2 if i =
k+1,...,n. Since the product of complete lattices is a complete
lattice, (S, o) is a complete lattice.

We need the following key theorem due to Tarski (1955) in the
sequel:

Theorem A. Let (L, ) be a complete lattice and let T be an
isotone increasing mappings on L into itself. Then the set F=
{ue LITu=u }is non-empty and (F, ct) is a complete lattice.

Remark 3.3. A mapping T on a lattice L with order relation
is said to be isotone increasing if x, y € L, x o y implies
Tx o Ty.

The folllowing assumptions are made:

(A) R ({x,)=0

(A,) f(x, y, z) and g(x, y, z) are nondecreasing functions
in y and z with respect to the order relation o, foreach x € S;-

(A,) There exist the non-negative |1-integrable real func-
tions W (x) and W (x) defined on S , z> x such that | f(x, y,
z)| <W (x)and | g(x, y, z) |, < W (x) uniformly fory, z€ B,,.

(A,) The matrix k(F, x) is non-negative i.e. each element
of n x n matrix K(F, x) is a non-negative real number and

SUPy..y JplK(F, X)Idp <K forall x € S, where || denotes
a suitable matrix norm.

Theorem 3.1. Suppose that the assumptions (A )-(A,) are -
satisfied and q € C,,, Then there exist maximal and minimal
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solutions of the AMIDE (3.1)-(3.2) on X for some z > x,,.

Proof. Let {r } be adecreasing sequence of real numbers such
thatr, — 1 as n—eo, and

Sr.x, 2 Sr.x, O... 2 Sx,,
Then it follows that:

B ST = KPR 0. anemsinsersrsmssmasmtansebismasis (3.4)

n—poo

This shows that there exist a number r and a point X, =X,
such that Sx, ¢ Sx, and

W x)ydp+K, | W0 dp< H-1g e (3.5)
xﬂxl xLixl
This is possible by hypothesis (A,) and positiveness of y. A
subset S is defined in the Banach space ca(Sx,, Mx,), by
S = {P € ca(Sx, Mx ) | P(E) =q(E), Ee M,,

R IPIESR it st etz st B

where K=ligll + | W (x)dp+K | W,(x)du

xDx 1 xl:lxl

It follows from (3.5) and (3.6) that I Pll_ <H, for P € S. Now
if the operator T on S is defined by

T@ E)=GE); BE M, issiscmssisiantsssssmmesnf 35T

T(P) (E) =, f(x, P( Sx), P( Sx,)dp
+ [ (5o KF, y) g(y, P( Sy ), P( Sy, ) dp) dy........(3.8)

Fe xX,Ee Mx,.

Then as shown in Theorem 1 of Dhage (1990), the operator T
maps complete lattice, it is complete w.r.t. the order relation
o. LetP, P, € S and P, o P,, then by (A,), we get

TP,(E) = [, f(x, P( Sx ), P( Sx,) du
+ [ Upso K, ¥) q(y, P, ( Sy), P,( Sy, )) du) dy

o f f(x, P,( Sx),P,( Sx,))du
+Ji oo K, ¥) q(y, P, ( Sy), P( Sy,)) du) du

=TP,(E), Ee XX, E€ Mx,

o

This shows that the operator T is an isotone increasing on S.
An application of theorem A yields that the fixed point set of
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the operator T is non-empty and complete lattice. Conse-
quently the solution set of the AMIDE (3.1)-(3.2) is non-
empty and complete lattice. This further implies that the delay
AMIDE (3.1)-(3.2) has maximal and minimal solutions on
XX, X, > X,. The proof is complete.

Integro-differential Inequalities. The basic inequalities
concerning the solution of the integro-differential inequalities
are established as follows. They also serve as the bound for the
solution of the related integro-differential equations and are

useful for proving the uniqueness of the solutions of the delay
AMIDE (3.1)-(3.2).

Theorem4. 1. Let the assumptions of theorem 3.1 be satisfied.
Suppose thata ¢ € S, where S is defined as in theorem 3.1,
satisfies

OE)gBLBEM ... it mevasaiestnisanest (4.1)
do o fi S. S
W (x, ( Sx ), d( Sx.))

+ o0 K, 1) 80,00 5Y), 00 SY,) Al e (42)

Fe XX,Fe Mx,.

01

Then
O ENOPAE), B MK crressissminmsmmsmssaissnansssonsChd)

where P, =P, ( §xu, q ) is the maximal solution of (3.1)-(3.2)

existing on X X, X, > X,

Proof. Let P =sup 8. Clearly the element P exists since S is
a complete lattice. Consider the lattice interval [¢, P], which
is obviously a complete lattice. Define the operator T on S as
in the proof of theorem 3.1. Then T is isotone increasing and
maps S into itself. To show that T maps [¢, P] into itself, it is
engough to prove that if P € S, and ¢ o P then ¢ o Tp. Let E
€ Mx,, E € X X,, then using (4.1), (4.2) and the assumption

(A,), the following is obtained:

O B) ol £(x,0( Sx ), ¢( Sx,)du

+ I U KB, ¥) (3, 6 ( Sy ), ¢ ( Sy,)) du) d
of. f(x,p( Sx ), p( Sx,)du

+], Usso K F.y) g0y, p ( Sy ), p ( Sy,)) du) du

=Tp (E)

Thus it is proved that T maps [¢, P] into itself. An application
of theorem A gives that the maximal solution P, of (3.1)-(3.2)
lies in [¢, P]. This implies that §(E) o P,(E), E € MXx,. This
completes the proof.
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Theorem 4.2. Let the assumptions of theorem 3.1 be satis-
fied. Suppose that the function ¢ € S, where S is defined as in
the proof of theorem 3.1, satisfies

GEY Y ) BE Myuicissicsnssssiiississusescorsivsoiossc{delh)

f(x, W Sx), ( Sx)) + s K (F,y) gy, pW( Sy), v
(B DB O Tt ssinscsssvassssrasossssssisiasinstoniit 4.5)

Ee xx,Ee Mxl.

{130 &y

Then

BB O NEE), B MK nivrsisbistimsssssssssiisissessains Th0)

where P_is the minimal solution of the AMIDE (3.1)-(3.2)

existing on TR > X

The proof of theorem 4.2 is similar to theorem 4.1 and the
details are omitted.

In the following section, the applications of the integro-
differential inequalities are given to prove the boundedness
and uniqueness of the solution of the AMIDE (3.1)-(3.2)
which may be viewed as the comparison theorems for the
AMIDE (3.1)-(3.2).

Applications. Consider the delay AMIDE, involving the
delay w.

dr/du = u(x, r( Sx ), r( gxw)
s HCE, ¥) VX, 1(SY), 1(SY,) hcnivrinnennen(5.1)

Ee XX, ,Ee Mx,

satisfying the initial condition

KBNS R Mmoot {92)

where u(x, y, z), v(x, y, z) are non-negative L-integrable
functions defined on Sx, x R* x R* (R* being the set of al
positive real numbers), h(F, y) is a positive real function
defined on Mx x Sx,, r, i are finite positive measures on Mx,
and g, € C,, is an initial positive measure defined on M.

A monotonicity theorem similar to theorem 3.1 for the equa-
tion (5.1)-(5.2) can be proved on similar lines. It is merely
stated without proof.

Theorem 5. 1. Letall the assumptions of 4.1 hold, withf, g rand
k being replaced by u, v and h respectively. Letr,, =1, ( Sx,

q,) be the maximal solution of (5.1)-(5.2) existing on X X,.

Suppose d € S, where S is defined as in theorem 4.1, satisfies

161 (B S G B} BE Maissisisiniissisonasussuann (5.3)
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d 19l /dp<u(x, 19l ( 3x), 10l ( Sx,))
o0 D, Y) V(y, 161, ( Sy ), 10l ( Sy,)) di...........(5.4)
Ee xX,Ee Mx,

0"

Then
1ol (E)<r,(E),Ee Mx|(56)

Theorem 5.2. Let all the assumptions of theorem 5.1 hold.
Assume further that the functions f,g and k occuring in (3.1)-
(3.2) satisfy

Hix, y, 2) | < u(x, lyl, Izl )
lg(x, y, 2)I_ S v(x, lyl, I_zls) ........................................ (5.7
for all (x, y, z) € Sx, x P, x B,, and
| K(F, x) | £ h(F, x).....l........(5.8)
for (F, x) € Mx, x Sx,. If P( Sx

q ) is any solution of (3.1)-

o

(3.2) satisfying

IqB). S g, (B), B M i st sl 05
then

IMEL St B Ee M im0

where r,, is the maximal solution of (5.1)-(5.2).

Proof. If P( Sx,, q) is a solution of (3.1)-(3.2), then
P(E) = 4(E), Ee M,

and P(E) =, f(x, P( Sx), P( Sx_))du
+ [, (s KB, y) g0y, P( Sx), P( Sx,))dp) dp

Ec xx,,

Ee Mx,

This by virtue of (5.7)-(5.8), definition of IP|_and the increas-
ing character of p and v, implies that

IP(E)l < u(x, IP|, ( Sx), [Pl ( Sx,))dp
+ I Upiso h(P, y) V(y, IPI (Sy), IPL( Sy, ))di) dit....(5.11)

Further the inequalities (5.3)-(5.4) imply that

IPI(E) < ], u(x, IPI.( Sx), [P ( Sx,))du
+IE(IE(S:() h(f, y_) v(y, Pl ( §y ), P ( §yw )di) dp
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Since IP(E)| <IPl (E), E € MXx,, an application of theorem 4.1
yields that

IP(B)|, <1,(E), E € Mx,

This completes the proof.
Theorem 5.3. Let all the assumptions of theorem 5.1 hold.
Suppose that f and g satisfy

(x, y,» 2) - f(x,y,, )l S ux, ly -yl lz,-z,ls

1g(x, ¥,,2)) = 8(X, Yy 2L S V(X Iy =Y, ), 122 ls........(5.12)

for (x,y,, 2,), (X, ¥, 2,) € SX, X B, x B,,, and the condition (5.7)
holds. Further suppose that the zero measure is the only solu-
tion of (5.1) with q, identically zero measure. Then the
equation (3.1) - (3.2) has at the most one solution.

Proof. LetP =P ( §x0, q)andP,= Pz(_§x0, q) be any two

solutions of the AMIDE (3.1)-(3.1) on x X , X, > X,. Then

0

P (E)=P,(E)=q(E),ifE€ M and

P,(E)-P,(E) = [.| f(x, P,( Sx), P,( Sx,) - f(x, P,( Sx),
P,( Sx,)] du

+HUesK(E ) [80x, P,( Sx ), Py( Sx,) - f(x, P,( Sx),
P,( Sx,)] dp

Ec XX, Ee Mx,

i

This, by virtue of (5.7) and (5.12), the definition of positive
measure and increasing nature of u, v imply that

IP,(E)-P,(E)l, < Ju(x, rP,-lenl{ Sx ), IP-P,l ( Sx,)) du
+ [ s NE, Y) V(y, IP-P,J, ( Sy),IP-P,I ( Sy,))dp)du
Now an application of theorem 5.1 yields that
IP,(E) - P,(E)I, <0, E € Mx,
Hence P (E) =P,(E), E € Mx,

The proof is complete.

Discussion. The equation (3.1)-(3.1) includes several
measure differential equations discussed earlier by different
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authors as particular cases. If g=0and n = 1, then the abstract
measure delay differential equation is obtained as considered
by Joshi and Deo (1980).

;—‘i = f(x, P( Sx), P( Sx.)

and (&)

P(E) =q(E), E€ M,

Again when g = u and f(x, P( Sx ), P( Sx_)) = f(x, P( Sx,))
in (3.1) the delay differential equation is obtained as consid-
ered by Joshi and Kasralikar (1982).

dpP -
— = f(x,P( Sx)
du

P(E) = q(E),E € M,

Similarly if w=0, Fis independent of Sx and k(F, x) is a real-
valued function in (3.1), then it gets reduced to the abstract
measure integro-differential equation studied by the present
author (Dhage 1989).

dp = =
" f(x, P( Sx )+, k(F, x) g(x, P( Sx )))dpt

P(E)=q(E),Ee M,

The AMIDE (6.3) further includes the AMDE discussed by
Sharma (1975).

dp =
— = f(x, P( Sx,)
du e kA

P( §xﬂ)=l, Ae R

Thus the AMIDE (3.1)-(3.2) is more general and hence the
results of this paper include the results of Dhage (1989), Joshi
and Deo (1980), Joshi and Kasralikar (1982) and Sharma
(1975) as special cases.
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